Solutions to tutorial exercises for stochastic processes

T1. Denote by T the product topology on S. We will first show that the projection $\pi_{v}: S \rightarrow X$ given by $\pi_{v}(\eta)=\eta(v)$ is continuous. Let T_{X} denote the topology on X and let $A \in T_{X}$. For any $v \in V$ we have

$$
\pi_{v}^{-1}(A)=\{\eta \in S: \eta(v) \in A\}=\prod_{w \neq v} X \times A \in T
$$

by the definition of the product topology. So π_{v} is continuous for all $v \in V$.
Now let T denote a topology on S such that π_{v} is continuous for all $v \in V$. So for all $A \in T_{X}$ we have

$$
\pi_{v}^{-1}(A)=\prod_{w \neq v} X \times A \in T
$$

Suppose $B \subseteq S$ can be written as

$$
B=\prod_{v \in V_{1}} B_{v} \times \prod_{v \in V_{2}} X
$$

where V_{1} is finite, $V_{1} \cup V_{2}=S$ and $B_{v} \in T_{X}$. Then we can write

$$
B=\bigcap_{v \in V_{1}}\left(\prod_{w \neq v} X \times B_{v}\right) \in T
$$

since V_{1} is finite. It follows that T contains all sets included in the product topology.

T2. Let $A \in T_{\rho}$ and let $\eta \in A$ and $r>0$ such that $\rho(\eta, \xi)<r$ implies $\xi \in A$. Since α is summable we can write

$$
\sum_{v \in \mathbb{Z}^{d}} \alpha(v)=\sum_{v \in V_{1}} \alpha(v)+\sum_{v \in V_{2}} \alpha(v)
$$

with V_{1} finite and

$$
\sum_{v \in V_{2}} \alpha(v)<r
$$

Consider the set

$$
B_{\eta}=\prod_{v \in V_{1}}\{\eta(v)\} \times \prod_{v \in V_{2}}\{0,1\} .
$$

Then for all $\xi \in B_{\eta}$ it holds that $\rho(\eta, \xi)<r$, so that $B_{\eta} \subset A$. Furthermore we have $A=\bigcup_{\eta \in A} B_{\eta}$, so that A is in the product topology. So T_{ρ} is a subset of the product topology.

Now let B be in the base of the product topology:

$$
B=\prod_{v \in V_{1}} B_{v} \times \prod_{v \in V_{2}}\{0,1\}
$$

with V_{1} finite. Now let $\eta \in B$ and take $r=\min _{v \in V_{1}} \alpha(v)$. Then if $\rho(\eta, \xi)<r$ it follows that $\eta(v)=\xi(v)$ for all $v \in V_{1}$, so that $\xi \in B$. It follows that B is in T_{ρ}. Since T_{ρ} is a topology and the base of the product topology is contained in T_{ρ} it follows that the product topology is a subset of T_{ρ}.

T3. Since \mathbb{Z}^{d} is countable, we can find a bijection $\nu: \mathbb{Z}^{d} \rightarrow \mathbb{N}$. Define $\alpha: \mathbb{Z}^{d} \rightarrow(0, \infty)$ by $\alpha(x)=1 / \nu(x)^{2}$. Then

$$
\sum_{x \in \mathbb{Z}^{d}} \alpha(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Let ρ be the metric as defined in (T2). Using (T2), it remains to show that $\left(\eta_{n}\right)$ converges pointwise if and only if it converges with respect to ρ.
\Rightarrow : Suppose η_{n} converges pointwise to η. For every $x \in \mathbb{Z}^{d}$ there exists $N_{x} \in \mathbb{N}$ such that for all $n>N_{x}$ we have $\eta_{n}(x)=\eta(x)$. Let $\varepsilon>0$ and take M such that $\sum_{n=M}^{\infty} 1 / n^{2}<\varepsilon$. Let

$$
N:=\max _{x: \nu(x)<M} N_{x} .
$$

It follows that for all $n>N$ we have

$$
\rho\left(\eta_{n}, \eta\right)=\sum_{x \in \mathbb{Z}^{d}} \frac{1}{\nu(x)^{2}}\left|\eta_{n}(x)-\eta(x)\right|=\sum_{x: \nu(x) \geq M} \frac{1}{\nu(x)^{2}}<\varepsilon .
$$

It follows that $\left(\eta_{n}\right)$ converges with respect to ρ.
\Leftarrow : Suppose $\left(\eta_{n}\right)$ converges with respect to ρ. Let $x \in \mathbb{Z}^{d}$. Take $\varepsilon=1 / \nu(x)^{2}$. Then there exists $N \in \mathbb{N}$ such that for all $n>N$ we have

$$
\rho\left(\eta_{n}, \eta\right)=\sum_{x \in \mathbb{Z}^{d}} \frac{1}{\nu(x)^{2}}\left|\eta_{n}(x)-\eta(x)\right|<\varepsilon .
$$

It follows that $\eta_{n}(x)=\eta(x)$ for all $n>N$, so that $\left(\eta_{n}\right)$ converges pointwise.

T4. Consider the function $f:\{0,1\}^{V} \rightarrow\{0,1\}$ given by

$$
f(\eta)=\mathbb{1}\{|x \in V: \eta(x)=1|=\infty\}
$$

. Then $\sup _{\eta}\left|f\left(\eta_{x}\right)-f(\eta)\right|=0$ for all $x \in V$, so that

$$
\sum_{x \in V} \sup _{\eta}\left|f\left(\eta_{x}\right)-f(\eta)\right|=0
$$

However we can show that f is not continuous. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be an enumeration of V and let η be such that $f(\eta)=1$. Define the sequence

$$
\eta_{n}(x)= \begin{cases}\eta(x) & \text { if } x=x_{k} \text { for some } k \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Then $\eta_{n}(x) \rightarrow \eta(x)$ pointwise as $n \rightarrow \infty$, so also $\eta_{n} \rightarrow \eta$ by T3. However $f\left(\eta_{n}\right)=0$ for all $n \in \mathbb{N}$.

